Modul 2
Percobaan 2 Kondisi 3
- Rangkai sesuai gambar percobaan dengan inputnya yaitu sensor Soil Moisture dan outputnya yaitu LED RGB dan Motor Stepper
- Buatlah program dengan konfigurasi pin input dan output berdasarkan pada pin GPIO STM32 yang telah dirangkai sebelumnya. Kemudian buatlah program untuk menghasilkan output LED RGB sesuai kondisi yang telah ditentukan
- Run simulation dan lihat perubahan ketika sensor soil moisture mendeteksi kelembapan basah
- Program selesai
2. Hardware dan Diagram Blok[Kembali]
A. Hardware
1. STM32
2. Sensor Soil Moisture
4. Motor Stepper6. LED
7. Resistor
B. Blok Diagram
3. Rangkaian Simulasi dan Prinsip Kerja[Kembali]
A. Rangkaian Simulasi
B. Prinsip Kerja
Rangkaian ini bekerja dengan sensor soil moisture sebagai input serta LED RGB dan Motor Stepper sebagai output.
Sensor soil moisture jika mendeteksi basah, maka akan menghasilkan output LED RGB akan berwarna biru dan motor stepper akan bergerak
4. Flowchart dan Listing Program[Kembali]
Listing Program :
#include
"stm32f1xx_hal.h"
// Konfigurasi Hardware
#define STEPPER_PORT GPIOB
#define IN1_PIN GPIO_PIN_8
#define IN2_PIN GPIO_PIN_9
#define IN3_PIN GPIO_PIN_10
#define IN4_PIN GPIO_PIN_11
#define LED_RED_PIN GPIO_PIN_12
#define LED_GREEN_PIN GPIO_PIN_13
#define LED_BLUE_PIN GPIO_PIN_14
#define LED_PORT GPIOB
// Mode Stepper
const uint16_t STEP_SEQ_CW[4] = {0x0100, 0x0200, 0x0400, 0x0800};
// Clockwise
const uint16_t STEP_SEQ_CCW[4] = {0x0800, 0x0400, 0x0200,
0x0100}; // Counter Clockwise
ADC_HandleTypeDef hadc1;
uint8_t current_mode = 0; // 0=CW, 1=CCW, 2=Oscillate
uint8_t direction = 0; //
Untuk mode oscillate
void SystemClock_Config(void);
void MX_GPIO_Init(void);
void MX_ADC1_Init(void);
void RunStepper(const uint16_t *sequence, uint8_t speed);
void Error_Handler(void);
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
while (1) {
// Baca potensiometer untuk pilih mode
HAL_ADC_Start(&hadc1);
if (HAL_ADC_PollForConversion(&hadc1, 10) == HAL_OK) {
uint16_t adc_val =
HAL_ADC_GetValue(&hadc1);
// Tentukan mode
if (adc_val < 1365) { // Mode 1: CW
current_mode = 0;
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED_PORT, LED_GREEN_PIN|LED_BLUE_PIN,
GPIO_PIN_RESET);
}
else if (adc_val < 2730) { // Mode 2: CCW
current_mode = 1;
HAL_GPIO_WritePin(LED_PORT, LED_GREEN_PIN, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN|LED_BLUE_PIN,
GPIO_PIN_RESET);
}
else { // Mode 3: Oscillate
current_mode = 2;
HAL_GPIO_WritePin(LED_PORT, LED_BLUE_PIN, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN|LED_GREEN_PIN,
GPIO_PIN_RESET);
}
}
// Eksekusi mode
switch(current_mode) {
case 0: // CW
RunStepper(STEP_SEQ_CW, 10);
break;
case 1: // CCW
RunStepper(STEP_SEQ_CCW, 10);
break;
case 2: // Oscillate
if(direction == 0) {
RunStepper(STEP_SEQ_CW, 5);
if(STEPPER_PORT->ODR == (STEPPER_PORT->ODR & 0x00FF) |
STEP_SEQ_CW[3])
direction = 1;
} else {
RunStepper(STEP_SEQ_CCW, 5);
if(STEPPER_PORT->ODR == (STEPPER_PORT->ODR & 0x00FF) |
STEP_SEQ_CCW[3])
direction = 0;
}
break;
}
}
}
void RunStepper(const uint16_t *sequence, uint8_t speed) {
static uint8_t step = 0;
STEPPER_PORT->ODR = (STEPPER_PORT->ODR & 0x00FF) |
sequence[step];
step = (step + 1) % 4;
HAL_Delay(speed);
}
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
RCC_ClkInitStruct.ClockType =
RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) !=
HAL_OK) {
Error_Handler();
}
}
void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOB_CLK_ENABLE();
// Konfigurasi LED
GPIO_InitStruct.Pin = LED_RED_PIN | LED_GREEN_PIN | LED_BLUE_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN; // Tambahkan pull-down
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; // High speed untuk stabil
HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct);
// Konfigurasi Stepper
GPIO_InitStruct.Pin = IN1_PIN | IN2_PIN | IN3_PIN | IN4_PIN;
HAL_GPIO_Init(STEPPER_PORT, &GPIO_InitStruct);
}
void MX_ADC1_Init(void) {
ADC_ChannelConfTypeDef sConfig = {0};
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK) {
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_71CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
}
void Error_Handler(void) {
while(1) {}
}
Rangkaian Simulasi Klik Disini
Video Simulasi Klik Disini
DataSheet STM32 Klik DisiniDataSheet Sensor Soil Moisture Klik Disini
DataSheet Motor Stepper Klik Disini
DataSheet Driver Motor Stepper ULN2003 Klik Disini
DataSheet LED RGB Klik disini
DataSheet Resistor Klik disini
Library Sensor Soil Moisture Klik Disini








